Osteoblast-Like Cell Behavior on Porous Scaffolds Based on Poly(styrene) Fibers

نویسندگان

  • Andrada Serafim
  • Romain Mallet
  • Florence Pascaretti-Grizon
  • Izabela-Cristina Stancu
  • Daniel Chappard
چکیده

Scaffolds of nonresorbable biomaterials can represent an interesting alternative for replacing large bone defects in some particular clinical cases with massive bone loss. Poly(styrene) microfibers were prepared by a dry spinning method. They were partially melted to provide 3D porous scaffolds. The quality of the material was assessed by Raman spectroscopy. Surface roughness was determined by atomic force microscopy and vertical interference microscopy. Saos-2 osteoblast-like cells were seeded on the surface of the fibers and left to proliferate. Cell morphology, evaluated by scanning electron microscopy, revealed that they can spread and elongate on the rough microfiber surface. Porous 3D scaffolds made of nonresorbable poly(styrene) fibers are cytocompatible biomaterials mimicking allogenic bone trabeculae and allowing the growth and development of osteoblast-like cells in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.

In this study, poly (L-lactic acid) (PLLA)/trifluoroethanol (TFE) solution was electrospun to fabricate fibrous scaffolds with different fiber orientations. Random and parallel PLLA nanofiber alignments were achieved by using a metal plate and a rolling rod as the receiver, respectively. The parallel PLLA fibrous scaffolds were further hot-stretched to obtain hyperparallel PLLA fibrous scaffold...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Poly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization

Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014